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An analytical study for determining the dynamics of a boiling 
boundary in a channel 
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Abstract 

This paper applies control analysis techniques to study the response of two moving-boundary nodal models for the 
prediction of the time evolution of the boiling boundary in a heated channel. A model based on finite elements shows 
anti-resonances in the gain versus frequency curve similar to that of exact solution. The gain of the second model, based 
on a finite difference approach, has a damped variation with the frequency. This is the same with that of the conventional 
linearized fixed control vjolume model. The number of nodes to be used in a subcooled region is given for the models 
vs. frequency range of flow oscillation. I(’ 19% Elsevier Science Ltd. .41l rights reserved. 

Nomenclature 
L’ coefficient 
rl coefficient 
/I enthalpy [W s kg ‘1 
f  frequency [s -‘I 
F (5) transfer function 

SUh.SCl+?LS 
boil boiling boundary 
f  saturated fluid 
i inlet 
n number of node 
S saturated value 

L 
n 
N 
Q 
Y” 
.Y 
1 
u 
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length [m] 
number of node 
total number of nodes 
heat added per unit mass [W kg ‘1 
heat flux [W mm’] 

Laplace operator 
time [s] 
velocity [m s-~ ‘1 
axial coordinate [ml. 

r- ~...I I 

0 steady state condition. 

1. Introduction 

A fundamental problem in heat transfer is the moving 
boundary problem in a boiling channel. The conventional 
method of solution uses fixed nodes, and calculates the 
enthalpy at each node. In this paper we consider moving 
node models, where the nodes are constrained to move 

Grew s~rnoo~s 

A difference 
so that the enthalpy change inside the nodes is constant. 

1’ traveling time [s] 
There are two versions of the moving node model. One, 

(0 angle velocity [I s -‘I 
called the control volume model (or finite element model) 

0 time [s] 
[l-3], derives the equations for the motion of the nodes 

density [kg m ‘1. 
by assuming a linear enthalpy profile and integrating with 

0 respect to the space variable inside the nodes. We derive 
a new finite-difference mode1 based on the assumption 
that the energy equation is satisfied at each node, using 
an approximation for the spatial derivative. Assuming 
constant pressure and incompressible phases. the 
momentum equation is decoupled from the energy and 

*Corresponding author. continuity equations and so can be ignored. For a known 
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inlet velocity, the equations for the single-phase region 
of the boiling channel can be decoupled from the equa- 
tions of the two-phase region. 

The single-phase energy equation is linear, and there- 
fore it can be solved by the Method of Characteristics 
(MOC) [4, 51. 

In this paper using the results of [6], we investigate the 
time response of the two moving-boundary nodal models 
and we compare them with the solutions by the MOC 
and by the conventional fixed node model. We also apply 
linear control theory techniques to analyze the behavior 
of the models in the frequency domain to know bettct 
their general behavior in time. 

2. Model 

Assuming that the density and the system pressure are 
constant, the equation of conservation of mass becomes 
iu/?r = 0. This equation can be integrated to obtain 
u = u,(t). Then the enthalpy of a fluid moving in the 

PR.1 

P.th. 

PI lh, 

N, - 1 
hi + NAhs,b 

l 

hi+ i!$!! 
. 

h, 

single-phase region inside a heated channel (Fig. 1) is 
governed by the energy equation : 

where Q is assumed to be constant and uniform in each 
element. 

Consider the region of the channel: L+ ,(t) d 
z < L,,(r). where the axial position L,,(t) is defined as the 
location inside the channel where the liquid reaches a 
value of enthalpy equal to h,, = h,+ [(It, -h,)/N]n. (In Fig 
I N = N, where the enthalpy reaches its saturated value 
/I, at Lb, or L,,,,,,,<,.) This enthalpy. h,,. is taken to be 
constant. integrating equation (I) over this region and 
applying Leibnitz’s rule we obtain : 
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Fig. I, Schematic of the vertical heated channel 
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+4W,)-4L. ,)I = f&L,-L 1). (21 
Approximating the integral by assuming that h is piece- 
wise linear in the segment L,+, < c < L, we can evaluate 
the remaining integral. Thus the equation for the control 
volume model is 

(3) 

The second nodal model (finite difference model) is 
derived by writing the time derivative of the enthalpy at 
the boundary of the node. Since the boundary of the 
node follows the position inside the channel with a given 
value of enthalpy, we can write : 

(4) 

Substituting ah:c!r from equation (1) and approximating 
the derivative by 

81 11, -II,, , 
(T; = L,, - L ~- I 

(5) 

we obtain : 

dL 
-=q$f~) (C-L,). dr 

2.3. Fixed node model (Method qf’linrs) 

Using an upwind Euler integration the energy equation 
for h(z,,. t) = h,,(r) can be written as 

(7) 

For comparison with the other models, note that the 
position of the boiling boundary (in the node n = NJ is 
approximately, 

The exact solution for equation (I) (Q is constant) is 
given by [4. 51 : 

Note that h = h, = Qa+ h,, so that boiling occurs when 
cr = v  = [(hr-h,)/Q][ = (Lhnl,,O/u,O)]. The solution for z(o) 
is 

I 

” 
z(a) = u,[tcdl da. (12) 

(I 
Changing variable to t. and noting that for z = Lhollr 
rr = 0 corresponds to time t - 11. we have 

L hod = 
s; 

u,(f) dt’. (13) 
I-, 

Then 

d&w, 
-- = u,(t)-&(I--) 
dt 

3. Analysis 

The two moving boundary nodal methods give sets of 
ordinary differential equations (ODES) for the position 
of the nodes L,, Lz,. . Lu. The conventional upwind 
difference equations give a set of ordinary differential 
equations for the enthalpies at the fixed nodes. For com- 
parison, the position of the boiling boundary must be 
interpolated. The exact solution gives the enthalpy at all 
space points, at all times. 

The form of the solution for the moving boundary 
nodal methods allows the direct application of control 
theory techniques [7, 81 to study the response of the 
system as a function of the frequency of the inlet velocity, 
which appears as ‘forcing’ in these equations. In the exact 
solution, also, equation (14) is amenable to control tech- 
niques. However, these techniques cannot be applied 
directly to the method using fixed nodes. Here we lin- 
earize the system about the steady-state and study the 
response to small periodic velocity fluctuations. 

We use the Laplace transformation in the s = iw 
domain. The flow chart of the systems are presented in 
Figs. 2 and 3. The gain of the system is defined as the 
ratio between the amplitude of the response of the system, 
AL,(.s). and the amplitude of the perturbed forcing func- 
tion, Au,(s). 

The transfer function of control volume model [equa- 
tion (3)] is calculated by : 

AL,,(.s) = ;AL,,~ ,(.~)(~,-.~)+2A~~,(.~)~ ;,;;. 

By substituting for t) = 1,2.. , we obtain 

(15) 

where : 
(16) 



, ALo= 0 
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Fig. 2. Flow chart of the system. Control volume ( tinite element) 
model [equation (3)]. 

and assuming, u,,~ = 0.3 m s -‘. I!. ,,< ),I (, = 2.7 11-I. Q = 5200 
Wkg ‘. /I, = 4.468 x IO’ and 11, = 4 x 10’ W s kg ’ and 
so \’ = 9 s. 

The transfer function of finite difference model [equa- 
tion (6)] is calculated by : 

AL,,(s) = IAL,, ,(.s)c.!?+Au,(.v)) y+j, 

Again. substituting for II = I.?. . w have 

(17) 

The transfer function of linearized fixed node model 
[equations (7) and (S)] is calculated (in the node II = NJ 
by : 

lALo= 0 / 

+-jj-- h-,-AL1 

_L . 
S 

AL-t 

Fig. 3. Flow chart of system. FImte ditrerence model [equation 
(6)l. 

AI?,, = (Ah,, (.s)G,:~ + d,,Au, (s); 
I 

-~~ 
.\ + <,:‘2 

(20) 

where : 

We take lixed uniform nodes. so that (I,, = r/ is inde- 
pendent of II. The flow chart of the fixed node model has 
a similar structure as that of the finite difference model 
(see Fig. 3). The transfer function ofexact solution [equa- 
tion (14)] is calculated by : 

(22) 

This function has the first zero gain value less than 0.01 
(i.e. 40 dB) at ,f; = 1’1’ and the others are f; = i,!v and 

i = 1. i.. -x. The gain is I‘ when .s + 0 or t--t -L 



(if v  = 9 s. the gain is 19 dB, see Fig.4). When .\ --) x or 
t + 0 the gain will be zero, i.e. ic dB. 

After some manipulation of equation ( 16). we have : 

AI.,(s) ~. = 
AI,,(S) 

with using 

(23) 

we see that the transfer function approaches that of the 
exact solution as N -+ x : 

Again after some manipulation of equations (18) and 
(2 1) we have : 

(25) 

Thus both moving volume models and the fixed node 
model converge to the exact solution [equation (22)]. All 
the transfer functions give stable behavior of the systems 
as the real parts of the roots of denominators of these 
functions are negative. including one possible zero value 
in [equation (22)]. 

The behavior discussed in Section 3.1 can he also 
observed in the time domain. In general case, the simu- 
lation of different mod& can be carried out by numerical 
integration for the analysis. 

The exact solution can he obtained from the method 
of characteristics [equations (9). (IO). (1 I)]. The position 
of the traveling enthalpy wave is z = l~,r. Below this line. 
the characteristics come from boundary. above this line. 
they come from initial conditions. 

Enthalpy is determined : 

if :<~4,t 

h(z.t, =Q(;,1;/+M (,-E) 
if z > 11, t 
/I(:. I) = Qt+h, +/I~(:--yt) 

where : 
(27) 

4. Results 

It can be shown that the control volume model the 
finite ditrerence model and the fixed node model 

Fig. 4. Gain vs frequency. Control volume model [equation (3)]. 
finite difference model [equation (6)] and the exact solution. 

approach the exact solution as IV + x. Still. it is impor- 
tant to be able to compute with a small number of nodes 
to attain a certain degree of approximation. 

Next, the behavior of different models will be studied, a 
comparison between the control volume (finite element) 
model [equations (3) and (15)], the finite difference model 
[equations (6) and (17)] and the exact solution [equations 
(14) and (22)] for ten nodes is shown in Fig. 4. The 
behavior of the fixed node model [equations (71, (8) and 
(19)] is very similar to that of the finite difference model. 

It can be seen in Fig. 4. that for two moving boundary 
models, the gains are practically the same below the first 
antiresonant frequency ,f; = 0.115 Hz (with zero gain, 
that means practically less than 0.01, i.e. 40 dB). The 
gains calculated by exact solution verify these results, see 
Fig.4. Below the first antiresonant frequency the number 
of nodes can be chosen as 3 i K < 10 for the subcooled 
region. 

In the neighborhood of the first (,/;) and higher fre- 
quencies (,f; = i/v and i = 2.3.. 1~) the behavior of the 
models will be different. The gain for the control volume 
model shows an antiresonant behavior (with zero gains) 
similarly to that of exact solution. The antiresonant 
effects with zero gains are caused by the negative sign of 
the last term on right side in equation (3). 

In spite of this the finite difference (and fixed node) 
models give damped curve. see Fig. 4. With N = 200 
nodes a small oscillation (but without zero values) of 
gains offinite difference (and fixed node) model [equation 
(6)] can be observed only in the small range of frequencies 

N = 10 
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from,/; to 6yf,, see in Fig. 5. On the contrary, the exact 
solution gives an antiresonant behavior (with zero gains) 
for whole higher frequency range. The finite difference 
and the fixed node models would yield similar response 
if N 2 10 000 nodes were used. 

The behavior of control volume model [equation (3)] 
compared with exact solution can be seen in this inter- 
esting region in Fig. 6. For ensuring 10 % error in the 
places of antiresonant frequencies between the exact sol- 
ution and the control volume model, following number 
of nodes should be chosen, in the region of ,f;, N = IO, 
between f, and 3*f,, N = 20 and between 3*f; and h*J,, 
N = 30. For achieving 2% error in the last frequency 
range, N = 100 should be used. 

4.2. Results in time domain 

The different behavior discussed in last section can be 
also observed in the time domain. In a numerical exam- 
ple, we selected the first antiresonant frequency, 
fi = 0.115 Hz ( for N = IO) of the control volume model 
[equation (3)] where the finite difference model [equation 
(6)] and the fixed node model [equation (S)] have a gain 
about 1.2 (i.e. 1.6 dB) (see in Fig. 4). After sinusoidal 
perturbation of inlet fluid velocity [(u, = 0.3+ 
0.1); sin(2rrfi)], the changes in length of boiling boundary 
vs. time can be seen in Fig. 7. The changes (0.12 m to 0.1 
m s-‘) in time using models [equations (6) and (8)] are 
equivalent to gain of 1.6 dB. Using control volume model 
[equation (3)] (with zero gain) no changes in position 
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Fig. 5. Gain vs. freqency. Finite difference model [equation (6)] 
at different number of nodes compared to exact solution. 
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Fig. 6. Gain vs. freqencq. Control volume model [equation (3)] 
at different number of nodes compared to exact solution. 

occurred. what is correct. (The exact solution has also 
zero gain at this frequency, see in Fig. 4.) 

Another interesting case to study is the behavior of the 
models when a step change in the inlet velocity is 
imposed. We calculated the time evolution of the boiling 
boundary with an inlet velocity of u,,, = 0.3 m s ’ when 
I < 0, and u, = 0.21 m 5 -I when I > 0 and N = 10 nodes. 
Figure 8 shows that the solution obtained from the con- 
trol volume model. [equation (3)], yields a quicker 
response than those from [equations (6) and (8)] when 
compared with the exact solution. A step change contains 
all frequencies (but weighted), therefore similar evol- 
utions of boiling boundary will be yielded. The gain of 
transfer functions is Y (V = 9 s or 19 dB) when .Y + 0. t + 
K,, in Fig. 4. in this way if the change of u, is 0.09 m s ‘. 
then the change of I!.,,,,, will be 9*0.09 = 0.81 m which is 
checked by the simulation. Note that the new steady state 
value of boiling boundary will be achieved in v  = 9 s. 

Figure 9 shows the evolution of the enthalpy inside the 
channel in time using exact solution [equations (26), (27)] 
after the same change in the inlet velocity as above and 
assuming h, = 0. It can be seen that the enthalpy of the 
saturated fluid h, = 446 800 W s kg ’ will be the same in 
the new steady state in / > 9 s. while the steady boiling 
boundary will change from L - 7 7 m to L,,,,, = 1.89 hrn.l~ - I’ 
m. The exact solution (in Fig. 8) yields from this surface 

(Fig. 9) cutting by the plane of 11 = /Q. The calculated 
surface is correct below this plane (i.e. only in the sub- 
cooled region). 
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Fig. 7. Time evolution of change of the boiling boundary after 
a periodic perturbation of the inlet veloclly. (Control volume 
model [equation (3)]. finite difi’erence model [equation (6)] and 
iixed node model [equation (X)]). 

Thus the results in frequency and time domains got 
from different methods have been verified by each other. 

5. Conclusions 

Two, a control volume mode1 (with finite elements) 
and a finite difference models w-ith moving boiling bound- 
ary have been analyzed in comparison to the con- 
ventional (linearized) fixed node mode1 and to the exacl 
solution method. The investigations have been carried 
out in the frequency domain and in the time domain with 
periodic perturbations and with a step change of the 
inlet fluid velocity. These results compared well with each 
other. 

The behavior of the conventional (linearized) fixed 
node model is practically the same as that of the finite 
difference model in the whole range of frequency. 

The behavior of the finite element. of the fixed node 
and of the tinite difference models, and of the exact sol- 
ution are the same at lower frequencies. where the num- 
ber of nodes in the subcooled region can be chosen 
between N = 3 and N = IO. After the first antiresonant 
frequency of the system. the behavior of these models 
will differ from each other. The first ‘critical’ frequency 
(f, = 1;~ = Q:(h,-h,) = LI,JL ,,,,,, ,,) is physically the 

N=lO 

-Exact 
-- Eq.3 

9 9 l Eq.6 
0 Eq.8 

0 5 10 15 20 25 30 35 40 
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Fig. 8. Time evolution of the boiling boundary after a step 
perturbation in the Inlet velocity. (Control volume model [equa- 
tion (3)], finite difference model [equation (6)]. fixed node model 
[equation (8)] and the exact solution [equations (26), (27)]). 

reciprocal value of fluid traveling time (as a delay) to 
boiling boundary in the heated channel. Above this fre- 
quency (approx. -0.1-0.2 Hz) only the control volume 
mode1 (with finite elements) with moving boiling bound- 
ary is a practical method for approximating the exact 
solution (with zero gains) using some number of nodes 
10 < N < 30. The finite difference and fixed node models 
give only a damped gain curve without antiresonant 
effects for whole frequency region, using 3 d N < 10. The 
finite difference model (with tnoving boiling boundary) 
and the fixed node mode1 converge much slower (with 
increasing of number of nodes) than the control volume 
mode1 (with moving boiling boundary) to the exact solu- 
tion over the first ‘critical’ frequency. 

Fundamentally, the gains (the behavior of the system) 
are determined by value of I‘ in whole range of frequency. 

To our knowledge, no experimental results exist for 
comparison with the model predictions. The presence of 
the antiresonance behavior in all the models suggests 
that measurements should be made and compared to the 
analytic predictions. 
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Fig. 9. Time and spatial evolution of the boiling boundary after a time step perturbation in the mlet velocity. 
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